MATH 5061 Lecture 3 (Jan 27)

Problem Set 2 is posted, due on Feb 10.]

Last time f: M→N embedding, TM, vector bundle (on S") vector field X on M, as a section of TM.

§ Vector Fields as "derivations"

 $X \in T(TM)$ locally in coord $X(x_1, \dots, x_m) = \sum_{i=1}^m X^i(x_1, \dots, x_m) \frac{\partial}{\partial x^i}$

 $\frac{\text{TDEA}:}{X} \text{ acts on smooth functions } C^{\infty}(M) \text{ by derivative}} \\ \frac{\text{Notation}:}{\text{O}^{\infty}(M):=[f: M \rightarrow iR \text{ smooth}]} \\ \widehat{\text{O}^{iff}(M):=[\varphi: M \rightarrow M \text{ diffeo.}]} \\ \widehat{\text{O}^{iff}(M):=[\varphi: M \rightarrow M \text{ diffeo.}]} \\ \widehat{\text{Given } X \in T(TM), f \in C^{\infty}(M), p \in M, \\ X(f)(p):=\sum_{i=1}^{m} X^{i}(o) \frac{2f}{2X^{i}} \Big|_{o} \quad \text{for any local coord.} \\ x_{i...,}^{i...,x^{m}} \text{ st } P = 0. \end{cases}$

Consider all points p & M ,

Prop: The map above is a derivation, i.e. Vq.b & R. f.g & C°(N). (1) "Linearity": X(af+bg) = a X(f) + b X(g)(2) "Liebniz Rule": $X(fg) = g \cdot X(f) + f \cdot X(g)$ FACT: { vector fields } $\xrightarrow{1-1}$ { derivations } Def?: (Lie bracket) Let X, Y & P(TM). $[X,Y] := XY - YX \in T(TM).$ i.e. [X,Y](f) := X(Y(f)) - Y(X(f))Properties of [...] (i) [X,Y] = -[Y,X](ii) [.,.] is iR-linear in each slot (iii) (Jacobi identity) [X,[Y,2]] + [Y, [2,x]] + [2, [x,Y]] = 0Caution: [.,.] is defined only using the smooth structure on M. § Flow and integral curves of vector fields Let X & T(TM). Consider the following I.V.P. P C(t) $\int_{c_{p}}^{c_{p}}(t) = \chi(c_{p}(t)) \quad \forall t \in I$ $\int_{c_{p}}^{c_{p}}(c_{p}) = p$ $0.D.E. \Rightarrow \exists unique sol² C_p(t): I_p \rightarrow M + hat depends smoothly on$ the initial data C(0) = P $F_{2} X = x^{2} \frac{\partial}{\partial x}$

Thm: If X & P(TM) is compactly supported, then the maps

Moreover. $\phi_t \circ \phi_s = \phi_{t+s}$ $\forall t,s \in \mathbb{R}$.

ie. $\{\phi_t\}_{t \in \mathbb{R}} \in \mathcal{D}_{iff}(M)$ forms a 1-parameter group called the flow generated by X.

by the differential dop: TpM -> Top, M. at each pEM.

Thm: Let X, Y & T(TM), cptly supported. Suppose [\$the flow generated by Y. Then. Then. The suppose of the flow generated by Y.

$$[X, Y] = \frac{\alpha}{dt} \Big|_{t=0}^{(\varphi_t)_*} X (=: -\mathcal{L}_Y X)$$

§ Tensors

Tensor Product: dim (Vew) = dim V. dim W.

$$V \otimes W := \left\{ \sum_{i=1}^{k} a_i \left(v_i \otimes w_i \right) \mid a_i \in \mathbb{R}, v_i \in V. w_i \in W \right\}$$

St.
$$(a_1v_1+a_2v_2) \otimes w = a_1(v_1 \otimes w) + a_2(v_2 \otimes w)$$

 $V \otimes (b_1w_1+b_2w_2) = b_1(v \otimes w_1) + b_2(v \otimes w_2)$
 $\cdot \otimes \cdot$

Equivalently, we view:

$$V \otimes W \cong \int \phi : V \times W \longrightarrow i\mathbb{R}$$
 "bilinear" }
i.e. $\phi(\cdot, w) : V \longrightarrow i\mathbb{R}$ linear for each fixed we W
 $\phi(v_1, \cdot) : W \longrightarrow i\mathbb{R}$ linear for each fixed VEV.

 $\begin{array}{ccc} Recall: \exists natural / canonical pairing \\ & V & V^{*} \longrightarrow R \\ & (V, V^{*}) \longmapsto V^{*}(V) \end{array}$ $\begin{array}{cccc} We have for any & V^{*} \in V^{*}, & W^{*} \in W^{*}, \\ V^{*} \otimes W^{*} \Rightarrow & (V^{*} \otimes W^{*})(V,W) := V^{*}(V) \cdot W^{*}(W) \end{array}$ $\begin{array}{cccc} We & (V^{*} \otimes W^{*})(V,W) := V^{*}(V) \cdot W^{*}(W) \end{array}$ $\begin{array}{cccc} We & (V^{*} \otimes W^{*})(V,W) & := V^{*}(V) \cdot W^{*}(W) \end{array}$ $\begin{array}{cccc} We & (V^{*} \otimes W^{*})(V,W) & := V^{*}(V) \cdot W^{*}(W) \end{array}$ $\begin{array}{cccc} We & (V^{*} \otimes W^{*})(V,W) & := V^{*}(V) \cdot W^{*}(W) \end{array}$ $\begin{array}{cccc} We & (V^{*} \otimes W^{*})(V,W) & := V^{*}(V) \cdot W^{*}(W) \end{array}$ $\begin{array}{cccc} We & (V^{*} \otimes W^{*})(V,W) & := V^{*}(V) \cdot W^{*}(W) \end{array}$ $\begin{array}{cccc} We & (V^{*} \otimes W^{*})(V,W) & := V^{*}(V) \cdot W^{*}(W) \end{array}$ $\begin{array}{cccc} We & (V^{*} \otimes W^{*})(V,W) & := V^{*}(V) \cdot W^{*}(W) \end{array}$ $\begin{array}{cccc} We & (V^{*} \otimes W^{*})(V,W) & := V^{*}(V) \cdot W^{*}(W) \end{array}$

Moral: Any "canonical" (ie. indep. of choice of basis) constructions for vector spaces can be done fibernise on vector bundles.

Applying to the tangent bunchle TM

$$TM := \coprod_{p \in M} T_p M \xrightarrow{dual} T^{*}_M := \coprod_{p \in M} T_p^{*}_M \xrightarrow{cotangent}_{bundle}$$

$$T^{*}_O M := \coprod_{p \in M} (T_p M \otimes \dots \otimes T_p M) \otimes (T_p^{*}_M \otimes \dots \otimes T_p^{*}_M)$$

$$Covenient P \in M (T_p M \otimes \dots \otimes T_p M) \otimes (T_p^{*}_M \otimes \dots \otimes T_p^{*}_M)$$

$$F - trives \qquad s - trives$$

$$(r, s) - tensor$$

$$bundle over M \qquad Eg.) T^{*}_O M = TM \quad ; \quad T^{*}_i M = T^{*}_M M$$

(1) tensor product @
(2) "Contraction":
$$C_{i,j} : \bigvee^{\otimes p} \otimes \bigvee^{* \otimes q} \longrightarrow \bigvee^{\otimes (p-1)} \otimes \bigvee^{* \otimes (q-1)} (w.st. i, j)$$

 $C_{i,j} (\vee_i \otimes \cdots \otimes \vee_p \otimes \vee_i^* \otimes \cdots \otimes \vee_j^*)$
 $= \bigvee_{j}^{*} (\vee_i) (\vee_i \otimes \cdots \otimes \bigvee_{i}^* \otimes \cdots \otimes \vee_p) \otimes (\vee_i^* \otimes \cdots \otimes \bigvee_{j}^* \otimes \cdots \otimes \vee_p) \otimes (\vee_i^* \otimes \cdots \otimes \bigvee_{i}^* \otimes \cdots \otimes \vee_p)$
 $\overline{\mathbb{P}}$
 $\overline{\mathbb{P}}$
 $\overline{\mathbb{P}}$. $C_{i,1} : \vee \otimes \bigvee^* \longrightarrow \mathbb{R}$: $C_{i,1} (\vee \otimes \vee^*) = \vee^* (\vee)$
 $Note: This is just the "trace" on End (\vee) \cong \vee \otimes \vee^*$
 $\overline{\mathbb{P}}$: $C_{i,n}$ is $j \otimes \mathbb{P}$ is $(\vee \otimes \vee^*) (\otimes) = \vee^* (\otimes) \cdot \vee$

(3) "Interior Product" (w.rt
$$\forall \in V$$
)
Griven $Q \in (V^*)^{\otimes 2}$, i.e. $Q : V \times \cdots \times V \longrightarrow \mathbb{R}$ multilinear.
define $(2_{V}Q) \in (V^*)^{\otimes (2^{-1})}$ as
 $(2_{V}Q) (V_{1,...}, V_{2^{-1}}) := Q(V, V_{1,...}, V_{2^{-1}})$

Pullback of tensors

Given a diffeo. $\phi: M \rightarrow N$, we can pullback (p,q)-tensors on N to obtain (p,q)-tensors on M as follow:

Kemerks: (i)
$$(\phi \circ \psi)^{"} = \psi^{"} \circ \phi^{"}$$
 for $\varphi, \psi \in \mathcal{D}$ iff
(ii) ϕ^{*} commutes with any contraction.

Shie derivative

Given X $\in T(T_M)$, we can define the Lie derivative (w.r.t X) flow $\{\phi_t\}_t$ $\int_X : T(T_1^PM) \longrightarrow T(T_2^PM)$ by $\int_X \alpha := \frac{d}{dt} \left| (\phi_t^* \alpha) \right|_{t=0}$

Properties of LX

(a)
$$L_{X}f = X(f) = df(X)$$
, $\forall f \in C^{\infty}(M)$
(b) $L_{X}Y = [X,Y]$ $\forall Y \in T(TM)$
(c) $L_{X}(\alpha \otimes \beta) = (L_{X}\alpha) \otimes \beta + \alpha \otimes (L_{X}\beta)$ $\forall \text{ tensors } \alpha, \beta$.
(d) $L_{X} \circ C = C \circ L_{X}$ $\forall \text{ contraction } C$
FACT: These 4 properties uniquely characterize L_{X} .
Reason: Suppose \exists linear map
 $P_{X} : T(T_{1}^{p}M) \rightarrow T(T_{1}^{p}M)$
satirfying (a) - (d) above. Claim: $P_{X} = L_{X}$.
First, we show P_{X} is a "local" operator:
i.e. Suppose $\alpha, \beta \in F(T_{1}^{p}M)$ set $\alpha|_{M} \equiv \beta|_{M}$ on some open USM.
Them. $(P_{X}\alpha)|_{M} \equiv (P_{X}\beta)|_{M}$
($d^{1}M$)? Choose another open $V \subset C U$, is $V \subset U$.
 $M \geq U$ $f_{X} \neq f \in C^{\infty}(M)$ satisfies at
 $\int f \equiv d$ on V
 $f \equiv 0$ satisfies U .
Now, $\alpha|_{U} \equiv \beta|_{U} \Rightarrow f \alpha = f\beta$ on M
(c) $\Rightarrow (P_{X}f) \alpha + f (P_{X}\alpha) = (P_{X}f) (\beta + f (P_{X}\beta)) \xrightarrow{an} M$
(a) $\chi(f)$ $\chi(f)$ $\chi(f)$ on U
 \Rightarrow $P_{X}\alpha = P_{X}\beta$ on V \Rightarrow also on U solve on U solve V and by

Application: $L \times \cdot L Y - L Y \cdot L \times = L [X, Y]$ Q: What is a tensor "really"? (1,0) - tensor (~) vector fields J duel I dual (0,1) - tensor and 1-form - What about (0,2) - tensors ? C^(m) - module (0,2)-tensors () map P(TM) × P(TM) -> C⁽⁰⁾(M) bilinear over C⁰⁰(M) Why? "=>" Given (0,2)-tensor of & P(T2M), we define $d: T(TM) \times T(TM) \longrightarrow C^{\infty}(M)$

st.
$$d(X,Y)(p) = d_p(X_p,Y_p)$$
 $\forall p \in M$
 $T_{pM}^{*} \oplus T_{pM}^{*}$

 $N_{\overline{a}\overline{a}}: \quad \alpha\left(\frac{1}{2}x, Y\right) = \frac{1}{2}\alpha(x, Y) = \alpha(x, \frac{1}{2}X), \quad A \neq \varepsilon_{\alpha}(x, \frac{1}{2}X)$

"<=" Given a map

$$\Psi: T(TM) \times T(TM) \longrightarrow C^{\infty}(M), C^{\infty}(M) - bilinear$$

At each p ∈ M, we define a bilinear map (over iR)

Since $[f \times g] = (f \cdot (xg)) Y - (g \cdot (xg)) X + f f [x, Y]$ $f \cdot g \in C^{\infty}(M)$ Not $C^{\infty}(M) - biline$